THE MCKEAN-SINGER FORMULA VIA EQUIVARIANT QUANTIZATION

EUGENE RABINOVICH

1. INTRODUCTION

The aim of this talk is to present a proof, using the language of factorization algebras, and in particular the index theorem in Chapter 7 of [G], of the following

Theorem 1.1 (McKean-Singer). Let V be a Hermitian, \mathbb{Z}_2 -graded vector bundle on a compact Riemannian manifold M, with |dx| the Riemannian volume form on M. Let D be a self-adjoint Dirac operator on V, with k_t the heat kernel of D^2 . Then

(1)
$$\operatorname{ind}(D) = \int_M \operatorname{Str}(k_t(x, x)) |dx|.$$

The actual McKean-Singer theorem works for non-self-adjoint Dirac operators as well, but our proof will require D to be self-adjoint. We will give definitions of all of the objects in the theorem shortly, but first a bit of philosophy. This theorem gives us a relationship between a global, analytic quantity (the index of a Dirac operator) and a local, physical quantity (the super-trace of a heat kernel). This is what the index theorem is most famous for. We will see that the theorem of Gwilliam is similar in nature: it describes two ways to compute the obstruction to quantizing a field theory equivariantly with respect to the action of an L_{∞} algebra. One involves Feynman diagrams (which involve heat kernels), and the other is a global characterization (which will give us the index). This is, very roughly speaking, why we are able to use the theorem relating to field theory to prove an index-type theorem.

2. Generalized Laplacians, Heat Kernels, and Dirac Operators

We present here a list of definitions and results relevant to our talk. Throughout, M is a Riemannian manifold with Riemannian volume form |dx|. We let $V \to M$ be a vector bundle, which we will eventually specialify to be \mathbb{Z}_2 -graded. We let \mathcal{V} be the sheaf of smooth sections of V.

Definition 2.1. A generalized Laplacian is a differential operator

$$H:\mathcal{V}(M)\to\mathcal{V}(M)$$

such that

$$[[H, f], f] = -2|df|^2,$$

where we are thinking of C^{∞} functions as operators corresponding to multiplication by those functions.

Now we let V be \mathbb{Z}_2 -graded, and we denote by V^{\pm} the plus or minus graded components of V.

Date: 20 April 2017.

Definition 2.2. A **Dirac operator** on V is a grading-reversing operator

$$D: \Gamma(M, V^{\pm}) \to \Gamma(M, V^{\mp})$$

such that D^2 is a generalized Laplacian.

Theorem 2.1 (The Heat Kernel). Let (E, Q) be an elliptic complex, and let Q^{GF} be a cohomological degree -1 operator such that $H := QQ^{GF} + Q^{GF}Q$ is a generalized Laplacian. Then there is a unique **heat kernel** $k \in \Gamma(M \times M \times \mathbb{R} > 0, E \boxtimes E^*)$ satisfying:

(1)

$$\frac{d}{dt}K_t + (H \otimes 1)K_t = 0$$

(2) For $s \in \Gamma(M, E)$,

$$\lim_{t \to 0} \int_{y \in M} k_t(x, y) s(y) |dx| = s(x),$$

where the limit is uniform over M and is taken with respect to some norm on E. The heat kernel is the kernel of the operator e^{-tH} in the sense that

$$\int_{y \in M} k_t(x, y) s(y) = (e^{-tH}s)(x).$$

Definition 2.3. Let D^+ denote the restriction of a self-adjoint Dirac operator D to the space of positively-graded sections. Then, the **index** ind(D) of D is $dim(ker(D^+)) - dim(coker(D^+))$.

The last definition we need to understand this theorem as stated is

Definition 2.4. If $\phi : V \to V$ is a grading-preserving endomorphism of the super-vector space V, then the supertrace $Str(\phi)$ is defined to be

$$\operatorname{Str}(\phi) = \operatorname{Tr}(\phi \mid_{V^+}) - \operatorname{Tr}(\phi \mid_{V^-})$$

3. Equivariant Quantization of Free Theories

In this section, we discuss a theorem of Gwilliam about the quantization of cotangent theories with the action of an elliptic local L_{∞} algebra.

3.1. Set-up. For our purposes, we will just need the L_{∞} algebra to have a 1-bracket. In other words, we will have an elliptic complex (\mathcal{L}, d) on M acting on an elliptic complex (\mathcal{E}, Q) . Specifically, we need the following

Definition 3.1. A local representation of the elliptic complex (\mathcal{L}, d) on an elliptic complex (\mathcal{E}, Q) is a polydifferential operator $[_, _] : \mathcal{L} \otimes \mathcal{E} \to \mathcal{E}$ such that we have

(1) A derivation property:

$$Q([X,\phi]) = [dX,\phi] + (-1)^{|X|} [X,Q\phi]$$

(2) A Jacobi identity:

$$[X, [Y, \phi]] = (-1)^{|X||Y|} [Y, [X, \phi]]$$

Remark: As mentioned above, we could expand this definition to include local representations of elliptic L_{∞} -algebras on (\mathcal{E}, Q) , which is the level of generality in which the theorem of Gwilliam applies. However, we will not need this in our proof.

Example 3.1 (Key Example). Let V be a \mathbb{Z}_2 -graded vector bundle on M with a Dirac operator D. Define

$$\mathcal{E} = \mathcal{V}^+ \stackrel{D}{\longrightarrow} \mathcal{V}^-.$$

Here \mathcal{V} sits in degree 0. We let $\mathcal{L} = (\Omega^{\bullet}, d_{dR})$, and define for $f \in C^{\infty}M$

$$[f,\phi] = f\phi$$

By the derivation property, we must have

$$[df,\phi] = D(f\phi) - f(D\phi).$$

Some thought shows that this gives a well-defined action of one-forms on \mathcal{E} . The brackets of all higher forms on elements of \mathcal{E} vanish for degree reasons. Finally, the Jacobi property is trivially satisfied.

If we have the data of an elliptic complex (\mathcal{L}, d) and a local representation (\mathcal{E}, Q) of \mathcal{L} , we can define a BV theory whose space of fields is

$$\mathcal{F} := \mathcal{L}[1] \oplus \mathcal{E} \oplus \mathcal{E}^![-1],$$

where $\mathcal{E}^!$ is the space of sections of the bundle E^{\vee} . We think of this as the space of fields corresponding to the action

$$S(X,\phi,\psi) = \langle \phi, Q + Q^{!}\psi \rangle + \langle \phi, [X,\psi] \rangle$$

where $X \in \mathcal{L}[1], \psi, \phi \in \mathcal{T}^*[-1]\mathcal{E} := \mathcal{E} \oplus \mathcal{E}^![-1]$, and $\langle \neg, \neg \rangle$ is the natural anti-symmetric, degree -1 pairing on $T^*[-1]$. We should think of X as a background field, and we would like to quantize, for every X, the theory with action $S(X, \phi, \psi)$, thought of as only a function of the fields ϕ, ψ . The field X is non-propagating in the sense that when we do the Feynman diagrammatics, there are no internal edges corresponding to \mathcal{L} fields; we think of X as being an external "source."

Another way to think about this setup is to think of X as providing a deformation of the complex (\mathcal{E}, Q) with "differential" Q + [X,]. This operator will be degree +1 if X lives in degree 1 in \mathcal{L} and will square to zero if

$$Q^{2}\phi + Q[X,\phi] + [X,Q\phi] + [X,[X,\phi]] = [dX,\phi] = 0,$$

where we have used both properties of a local representation in the penultimate equality. Thus, for every closed degree 1 element X of \mathcal{L} , we have another elliptic complex $(\mathcal{E}, Q + [X,])$.

Now is the right time to say something about the Feynman diagrammatic way to describe the situation. We should think of the term

$$\langle \phi, [X, \psi] \rangle$$

as corresponding to a trivalent vertex that we can put in graphs, with one half-edge corresponding to an element of \mathcal{L} and two corresponding to $T^*[-1]\mathcal{E}$.

We will need one final bit of data to quantize the theory we're describing:

Definition 3.2. A gauge-fixing operator is an operator $Q^{GF}: T^*[-1]\mathcal{E} \to T^*[-1]\mathcal{E}$ satisfying

- (1) $(Q^{GF})^2 = 0.$
- (2) Q^{GF} is self-adjoint for the pairing $\langle -, \rangle$.
- (3) $[Q, Q^{GF}]$ is a generalized Laplacian, which we will denote H. (Here, we are taking the graded commutator, which for degree +1 and -1 operators is the anti-commutator).

In our theory, we have an obvious choice of gauge-fixing operator, namely the Dirac operator $D^- + D^{-!}$.

3.2. Chevalley-Eilenberg Cochains. For those of you who are into factorization algebras, you know that given a space of fields we can define a cochain complex of classical observables for each open set of M. In our case, we can take

$$\operatorname{Obs}^{cl}(U) = C^{\bullet}\left(\mathcal{L}(U), \widehat{Sym}^{*}\left(\mathcal{E}^{\vee} \oplus \mathcal{E}^{!}[1]^{\vee}\right)\right),$$

i.e. the classical observables are the Chevalley-Eilenberg cochains for the representation $\widehat{Sym}^*(\mathcal{E}^{\vee} \oplus \mathcal{E}^![-1]^{\vee})$. Here \vee means distributional dual. More explicitly,

$$Obs^{cl}(U) = \widehat{Sym}^{\bullet} \left(\mathcal{L}[1]^{\vee}(U) \oplus \mathcal{E}^{\vee}(U) \oplus \mathcal{E}^{!}[-1]^{\vee}(U) \right)$$

with the differential $d + Q + \{I, _\}$. Here, d is the operator on $Obs^{cl}(U)$ defined as the dual to d on $\mathcal{L}^{\vee}[-1]$ and 0 on $\mathcal{E}^{\vee} \oplus \mathcal{E}^{!}[-1]^{\vee}$, and then extended to all of $Obs^{cl}(U)$ by demanding that it be a derivation of degree 1. We mean a similar thing for Q, except that we define it as $Q \oplus Q^{!}$ on $\mathcal{E}^{\vee} \oplus \mathcal{E}^{!}[-1]^{\vee}$ and 0 on $\mathcal{L}^{\vee}[-1]$. To define $\{I, _\}$, we first let I denote the coset of the following element of $\mathcal{L}(U)[1]^{\vee} \otimes \mathcal{E}^{\vee} \otimes \mathcal{E}^{!}[-1]^{\vee}$ in \widehat{Sym}^{\bullet} :

$$X \otimes \phi \otimes \psi \mapsto \langle \phi, X\psi \rangle.$$

To define $\{I, _\}$ takes a bit of effort. The quickest way to define it is by defining it on elements ϕ of $T^*[-1]\mathcal{E}^{\vee}$ by

$$\{I,\phi\}(X,\psi) = -\phi([X,\psi])$$

when $X \in \mathcal{L}$ and $\psi \in T^*[-1]\mathcal{E}$. We extend $\{I, ...\}$ to the rest of $Obs^{cl}(U)$ by demanding that it be zero on elements of $\mathcal{L}[1]^{\vee}$ and a degree 1 derivation. Diagrammatically, $\{I, ...\}$ is represented by the following picture: DRAW PICTURE

Now that we've described the classical observables, we should move on to the quantum observables. This is the point where I should say that I was lying when I said that the quantum theory is described by the interaction I. We want to deform the differential on $Obs^{cl}(U)$ by a term $\hbar\Delta$, where Δ is a BV Laplacian. This is what works in the finitedimensional version of the BV story. However, the Δ as we would want to define it requires pairing distributions with distributions, a big no-no. Our next best solution is to have a family Δ_t of BV Laplacians parametrized by $\mathbb{R} > 0$. The first thing we want to do is define a slight modification of heat kernel which is more useful for our purposes.

Definition 3.3. The **BV heat kernel** $K_t \in T^*[-1]\mathcal{E} \otimes T^*[-1]\mathcal{E}$ is characterized by the property

$$-1 \otimes \langle -, - \rangle (K_t \otimes e) = \exp(-tH)e.$$

In other words,

$$-K_t(x,\langle y), _{-}\rangle = k_t(x,y),$$

where the notation hopefully explains itself. It should be noted that the heat kernel is a degree one object. Now, we can define

Definition 3.4. (1) The scale t **BV Laplacian** is the order-two operator $-\partial_{K_t}$; in other words, given an element ϕ of $Obs^{cl}(U)$, we sum (with appropriate signs) over possible ways of putting K_t in two of the "slots" of ϕ .

(2) The scale t Poisson bracket $\{-, -\}_t$ is defined by

$$\{J, J'\}_t = \Delta_t(JJ') - \Delta_t(J)J' - (-1)^{|J|}J\Delta_t(J').$$

Now, I won't get into the details, but there is a very non-canonical procedure for replacing I with a family of interactions $I[t] \in \text{Obs}^{cl}(U)[\![\hbar]\!]$, one for each t, such that there is a well-defined $t \to 0$ limit modulo \hbar and $I[t \to 0] = I \pmod{\hbar}$. With all of these objects in place, we can define the scale t quantum observables:

Definition 3.5. The scale t quantum observables have the same underlying graded vector space as $Obs^{cl}(U)$, but with the "pre-" differential

$$Q + d + \{I[t], _\}_t + \hbar \Delta_t.$$

The important question is whether this differential squares to zero; in fact, it turns out that the I[t]s are related in such a way that if the scale t pre-differential squares to zero, then the scale t' differential does as well for any other t'. The failure of this differential to square to zero is what we call the **obstruction** to \mathcal{L} -equivariant quantization of \mathcal{E} .

3.3. **Obstruction Theory.** Let us examine the obstruction more closely. Our main tool is the following theorem

- **Theorem 3.1** (Gwilliam). (1) The obstruction to the \mathcal{L} -equivariant quantization of the cotangent theory to \mathcal{E} is given by a well-defined cohomology class $\mathcal{O}(U) \in H^{\bullet}(\widehat{Sym}(\mathcal{L}[1]^{\vee}))$.
 - (2) Under conditions which are satisfied if in our key example D is self-adjoint with respect to some Hermitian metric on V and M is compact, then $\mathcal{O}(M)$ is given by the trace of the action of $H^{\bullet}(\mathcal{L}(M))$ on the determinant of $H^{*}(\mathcal{E}(M))$. Here we mean the graded determinant: if V is a Z-graded vector space,

$$\det(V) = \bigotimes_{i} (\Lambda^{\dim V_i} V_i)^{(-1)^i},$$

with W^{-1} defined as W^{\vee} .

We want to say more about how the obstruction class. To this end, we need the following

Definition 3.6. The propagator from scale t to scale t' is a degree 0 section of $T^*[-1]\mathcal{E} \otimes T^*[-1]\mathcal{E}$ given by

$$P(t,t') = \int_{s=t}^{t'} (Q^{GF} \otimes 1) K_s ds$$

Now, we can describe how to compute the obstruction $\mathcal{O}(U)$. We let

Definition 3.7. The tree-level, scale t interaction is the element of $Obs^q(U)[t]$ given by taking a sum over all connected tree-graphs with trivalent vertices as described above. The internal edges can only be composed of $T^*[-1]\mathcal{E}$ half-edges. To each graph we associate the following element of $Obs^q(U)[t]$: DRAW IT

Notice that for simple combinatorial reasons, all of the trees contributing to I_{tr} have only two external $T^*[-1]\mathcal{E}$ edges. Thus, $\Delta_t I_{tr}$ belongs to $\widehat{Sym}(\mathcal{L}[1]^{\vee})$. More important, we have

Lemma 3.2. A representative of the obstruction class is given by $\Delta_t I_{tr}[t]$. The cohomology class of this obstruction is independent of t.

EUGENE RABINOVICH

4. McKean-Singer

Now we are ready to use this machinery to derive the McKean-Singer formula. Recall from our key example that we want to take $\mathcal{E} = \mathcal{V}^+ \xrightarrow{D^+} \mathcal{V}^-$, $\mathcal{L} = \Omega^{\bullet}$, and Q^{GF} to be the negative part of the Dirac operator. We claim that Theorem 3.1 implies the McKean-Singer formula. To see this, let us first work out what the second part of the theorem tells us: in our case $H^{\bullet}(\mathcal{E})$ has $\ker(D^+)$ in degree 0 and $\operatorname{coker}(D^+)$ in degree 1, so that $\det(H^{\bullet}(\mathcal{E})) = \Lambda^{\dim \ker(D^+)} \ker(D^+) \otimes (\Lambda^{\dim \operatorname{coker}(D^+)} \operatorname{coker}(D^+))^{\vee}$. Now, $H^{\bullet}(\mathcal{L})$ is just the de Rham cohomology of M. In particular $\lambda \in H^0(\mathcal{L})$ acts on $\det(H^{\bullet}(E))$ by $\lambda \operatorname{ind}(D)$. So, we have one side of the equality. On the other hand, we consider the Feynman diagrams appearing in $I_{tr}[t]$: a graph with n vertices corresponds to the element

$$\lambda^{\otimes n} \otimes \phi \otimes \psi = \lambda^n \langle \phi, (Q^{GF} \int_0^t e^{-sH} ds)^{n-1} \psi \rangle$$

Since $Q^{GF}e^{-tH}$ lowers cohomological degree by 1, all terms with n > 2 are just zero. And the term for n = 2 does not vanish, but when we take the BV Laplacian to it, it will vanish. This is because $\langle \phi, (Q^{GF}e^{-tH})^{n-1}\psi \rangle$ is non-zero only when ϕ and ψ sit in the same degree. On the other hand, $K_t \in \mathcal{E}^0 \otimes \mathcal{E}^1 \oplus \mathcal{E}^1 \otimes \mathcal{E}^0$, so when we take the BV Laplacian, we do not get a non-zero contribution. Thus, the only contribution to the obstruction comes from the following diagram: DRAW IT

This diagram gives a contribution computed in the following way: at each point x of M, $k_t(x, x)$ is an element of $V_x^+ \otimes V_x^{+\vee} \oplus V_x^- \otimes V_x^{-\vee}$. We pair these via \langle , \rangle , which means that when we pair V_x^+ with $V_x^{+!}$ we get no sign, but we get a minus sign when we pair the degree $1 V^-$ part with the degree $0 V^{-!}$ part. Then we integrate over M. What we have shown is that

$$\Delta_t I_{tr}[t](\lambda) = \lambda \int_{x \in M} \operatorname{Str} k_t(x, x) |dx|.$$

This completes the proof.

References

[G] Gwilliam, Owen. Factorization Algebras and Free Field Theories. PhD Thesis. 2012.