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1. INTRODUCTION

The aim of this talk is to present a proof, using the language of factorization algebras,
and in particular the index theorem in Chapter 7 of [G], of the following

Theorem 1.1 (McKean-Singer). Let V' be a Hermitian, Zs-graded vector bundle on a com-
pact Riemannian manifold M, with |dx| the Riemannian volume form on M. Let D be a
self-adjoint Dirac operator on V , with k, the heat kernel of D*. Then

(1) ind(D) /M Str(ka(z, 7))|dz].

The actual McKean-Singer theorem works for non-self-adjoint Dirac operators as well, but
our proof will require D to be self-adjoint. We will give definitions of all of the objects in the
theorem shortly, but first a bit of philosophy. This theorem gives us a relationship between a
global, analytic quantity (the index of a Dirac operator) and a local, physical quantity (the
super-trace of a heat kernel). This is what the index theorem is most famous for. We will
see that the theorem of Gwilliam is similar in nature: it describes two ways to compute the
obstruction to quantizing a field theory equivariantly with respect to the action of an L.,
algebra. One involves Feynman diagrams (which involve heat kernels), and the other is a
global characterization (which will give us the index). This is, very roughly speaking, why
we are able to use the theorem relating to field theory to prove an index-type theorem.

2. GENERALIZED LAPLACIANS, HEAT KERNELS, AND DIRAC OPERATORS

We present here a list of definitions and results relevant to our talk. Throughout, M is
a Riemannian manifold with Riemannian volume form |dx|. We let V' — M be a vector
bundle, which we will eventually specialify to be Zs-graded. We let V be the sheaf of smooth
sections of V.

Definition 2.1. A generalized Laplacian is a differential operator
H:V(M)— V(M)

such that
HHa f]>f] = _2’df|27

where we are thinking of C'*° functions as operators corresponding to multiplication by those
functions.

Now we let V be Zy-graded, and we denote by V* the plus or minus graded components
of V.
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Definition 2.2. A Dirac operator on V is a grading-reversing operator
D :T(M,V*) = T(M,VTF)
such that D? is a generalized Laplacian.

Theorem 2.1 (The Heat Kernel). Let (E,Q) be an elliptic complex, and let Q%Y be a
cohomological degree -1 operator such that H := QQ%F 4+ Q%F'Q is a generalized Laplacian.
Then there is a unique heat kernel k € T'(M x M x R > 0, EX E*) satisfying:

(1)

d
St (H@1)K, =0

(2) ForseI'(M, E),
llr% kt(xv y)S(y)|dI| = S(ZL‘),
- yeM
where the limit is uniform over M and is taken with respect to some norm on E.

tH

The heat kernel is the kernel of the operator e in the sense that

/ e y)s(o) = () @),

Definition 2.3. Let Dt denote the restriction of a self-adjoint Dirac operator D to the
space of positively-graded sections. Then, the index ind(D) of D is dim(ker(DT)) —
dim(coker(D™)).

The last definition we need to understand this theorem as stated is

Definition 2.4. If ¢ : V — V is a grading-preserving endomorphism of the super-vector
space V, then the supertrace Str(¢) is defined to be

Str(¢) = Tr(¢ |y+) — Tr(¢ |v-)

3. EQUIVARIANT QUANTIZATION OF FREE THEORIES

In this section, we discuss a theorem of Gwilliam about the quantization of cotangent
theories with the action of an elliptic local L., algebra.

3.1. Set-up. For our purposes, we will just need the L., algebra to have a 1-bracket. In
other words, we will have an elliptic complex (£,d) on M acting on an elliptic complex
(€,Q). Specifically, we need the following

Definition 3.1. A local representation of the elliptic complex (£, d) on an elliptic complex
(€,Q) is a polydifferential operator [_, | : £L® E — & such that we have
(1) A derivation property:

QIX, ) = [dX, ¢] + (-1)M1[X, Q4]
(2) A Jacobi identity:
(X, [V, 0]l = (=1)XM[y [X, ¢]
Remark: As mentioned above, we could expand this definition to include local rep-

resentations of elliptic L-algebras on (&€, Q), which is the level of generality in which the
theorem of Gwilliam applies. However, we will not need this in our proof.
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Example 3.1 (Key Example). Let V' be a Zs-graded vector bundle on M with a Dirac
operator D. Define
E=Vvt V.
Here V sits in degree 0. We let £ = (Q°,dyg), and define for f € C*M
0] = fo.

By the derivation property, we must have

[df, 9] = D(f¢) — f(Do).
Some thought shows that this gives a well-defined action of one-forms on £. The brackets of
all higher forms on elements of £ vanish for degree reasons. Finally, the Jacobi property is
trivially satisfied.

If we have the data of an elliptic complex (£, d) and a local representation (£, Q) of L, we
can define a BV theory whose space of fields is

F=Ll]ofe & -1,

where &' is the space of sections of the bundle EV. We think of this as the space of fields
corresponding to the action

S(X, 0,9) = (6, Q + Q) + (¢, [X, ¥])

where X € L[1],9,¢ € T*[—1]€ = & ® £'[—1], and (_, ) is the natural anti-symmetric,
degree -1 pairing on T*[—1]. We should think of X as a background field, and we would like
to quantize, for every X, the theory with action S(X, ¢,), thought of as only a function of
the fields ¢, 1. The field X is non-propagating in the sense that when we do the Feynman
diagrammatics, there are no internal edges corresponding to £ fields; we think of X as being
an external “source.”

Another way to think about this setup is to think of X as providing a deformation of the
complex (&, Q) with “differential” @ + [X,_]. This operator will be degree +1 if X lives in
degree 1 in £ and will square to zero if

Q¢+ QIX, ¢] + [X, Q9] + [X, [X, ¢]] = [dX, ¢] = 0,
where we have used both properties of a local representation in the penultimate equality.
Thus, for every closed degree 1 element X of £, we have another elliptic complex (£, Q) +
X, ).
Now is the right time to say something about the Feynman diagrammatic way to describe
the situation. We should think of the term

(¢, [X, ¥])

as corresponding to a trivalent vertex that we can put in graphs, with one half-edge corre-
sponding to an element of £ and two corresponding to T*[—1]€.
We will need one final bit of data to quantize the theory we’re describing:

Definition 3.2. A gauge-fixing operator is an operator Q%" : T*[—1]€ — T*[—1]€ satis-
fying
(1) (QF)? = 0.
(2) QT is self-adjoint for the pairing (_, ).
(3) [Q, Q%] is a generalized Laplacian, which we will denote H. (Here, we are taking the
graded commutator, which for degree +1 and —1 operators is the anti-commutator).
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In our theory, we have an obvious choice of gauge-fixing operator, namely the Dirac
operator D™ + D™,

3.2. Chevalley-Eilenberg Cochains. For those of you who are into factorization algebras,
you know that given a space of fields we can define a cochain complex of classical observables
for each open set of M. In our case, we can take

Obs (1) = C* (£(U), Sym” (€Y & £1)Y)).

i.e. the classical observables are the Chevalley-Eilenberg cochains for the representation
Sym (EV eE ![—1]\’). Here V means distributional dual. More explicitly,

Obs?(U) = Sym. (L)Y (U) @ £Y(U) @ E'[-1]V (1))

with the differential d + Q + {I, _}. Here, d is the operator on Obs”(U) defined as the dual
to d on £Y[—1] and 0 on £ @ E'[~1]V, and then extended to all of Obs®(U) by demanding
that it be a derivation of degree 1. We mean a similar thing for (), except that we define it
as Q@ Q' on £V @ E'[—1]Y and 0 on LV[—1]. To define {I, _}, we first let I denote the coset

of the following element of £(U)[1]Y ® £¥ ® £'[—1]" in Sym :
X @Y — (¢, X0).

To define {1, _} takes a bit of effort. The quickest way to define it is by defining it on elements
¢ of T*[—1]EY by

when X € £ and ¢ € T*[-1]€. We extend {I,_} to the rest of Obs”(U) by demanding
that it be zero on elements of £[1]" and a degree 1 derivation. Diagrammatically, {1, _} is
represented by the following picture: DRAW PICTURE

Now that we’ve described the classical observables, we should move on to the quantum
observables. This is the point where I should say that I was lying when I said that the
quantum theory is described by the interaction I. We want to deform the differential on
Obs™(U) by a term AA, where A is a BV Laplacian. This is what works in the finite-
dimensional version of the BV story. However, the A as we would want to define it requires
pairing distributions with distributions, a big no-no. Our next best solution is to have a
family A, of BV Laplacians parametrized by R > 0. The first thing we want to do is define
a slight modification of heat kernel which is more useful for our purposes.

Definition 3.3. The BV heat kernel K; € T*[—1]€ ® T*[—1]€ is characterized by the
property
1o (K, ® e) = exp(—tH)e.

In other words,
_Kt(xa <?J)7 *) - kt(x7 y>7

where the notation hopefully explains itself. It should be noted that the heat kernel is a
degree one object. Now, we can define

Definition 3.4. (1) The scale t BV Laplacian is the order-two operator —dk,; in other
words, given an element ¢ of Obs®(U), we sum (with appropriate signs) over possible
ways of putting K; in two of the “slots” of ¢.
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(2) The scale t Poisson bracket {_, _}; is defined by
{1, T} = AfJT) = A(J) T — (=D)AL,

Now, I won’t get into the details, but there is a very non-canonical procedure for replacing
I with a family of interactions I[t] € Obs®(U)[#], one for each ¢, such that there is a well-
defined ¢ — 0 limit modulo A and I[t — 0] = I ( mod ). With all of these objects in

place, we can define the scale t quantum observables:

Definition 3.5. The scale t quantum observables have the same underlying graded vector
space as Obs?(U), but with the “pre-”differential

Q+d+ {I[t], }¢ + RA,.

The important question is whether this differential squares to zero; in fact, it turns out
that the I[t]s are related in such a way that if the scale ¢ pre-differential squares to zero,
then the scale t' differential does as well for any other #'. The failure of this differential to
square to zero is what we call the obstruction to L-equivariant quantization of £.

3.3. Obstruction Theory. Let us examine the obstruction more closely. Our main tool is
the following theorem

Theorem 3.1 (Gwilliam). (1) The obstruction to the L-equivariant quantization of the

cotangent theory to & is given by a well-defined cohomology class O(U) € H'(S/yFL(ﬁ[l]V)).
(2) Under conditions which are satisfied if in our key example D is self-adjoint with

respect to some Hermitian metric on V' and M is compact, then O(M) is given by
the trace of the action of H*(L(M)) on the determinant of H*(E(M)). Here we mean
the graded determinant: if V' is a Z-graded vector space,

det(V) = (AT V1)1,
with W= defined as WV.

We want to say more about how the obstruction class. To this end, we need the following

Definition 3.6. The propagator from scale ¢ to scale ¢’ is a degree 0 section of T*[—1]E®
T*[—1]€ given by
tl
Pt ¢) = / (QFF & 1)K ds.
s=t

Now, we can describe how to compute the obstruction O(U). We let

Definition 3.7. The tree-level, scale t interaction is the element of Obs?(U)[t] given by
taking a sum over all connected tree-graphs with trivalent vertices as described above. The
internal edges can only be composed of T*[—1]€ half-edges. To each graph we associate the
following element of Obs?(U)[t]: DRAW IT

Notice that for simple combinatorial reasons, all of the trees contributing to I;, have only
two external T*[—1]& edges. Thus, A.I;, belongs to Sym(L[1]"). More important, we have

Lemma 3.2. A representative of the obstruction class is given by A¢dy,[t]. The cohomology
class of this obstruction is independent of t.
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4. McKEAN-SINGER

Now we are ready to use this machinery to derive the McKean-Singer formula. Recall

from our key example that we want to take £ = V* o V-, L = Q°, and Q%" to be

the negative part of the Dirac operator. We claim that Theorem 3.1 implies the McKean-
Singer formula. To see this, let us first work out what the second part of the theorem
tells us: in our case H*(E) has ker(DT) in degree 0 and coker(D%) in degree 1, so that
det(H*(&)) = Admker(DT) kor(DF) @ (Adimeoker(D) coker(DH))Y. Now, H*(L) is just the de
Rham cohomology of M. In particular A € HY(L) acts on det(H*(E)) by Aind(D). So,
we have one side of the equality. On the other hand, we consider the Feynman diagrams
appearing in I;,.[t]: a graph with n vertices corresponds to the element

t
A 6@ 0= X0, (@ [ e sy )
0

Since Q%Fe~t lowers cohomological degree by 1, all terms with n > 2 are just zero. And
the term for n = 2 does not vanish, but when we take the BV Laplacian to it, it will vanish.
This is because (¢, (Q“Fe=*1)"~14)) is non-zero only when ¢ and ' sit in the same degree.
On the other hand, K, € £°® £' @ £ ® £, so when we take the BV Laplacian, we do not
get a non-zero contribution. Thus, the only contribution to the obstruction comes from the
following diagram: DRAW IT

This diagram gives a contribution computed in the following way: at each point x of M,
ki(z, ) is an element of V.t @ V.V @ V.- @ V.7V, We pair these via (,), which means that
when we pair V& with V' we get no sign, but we get a minus sign when we pair the degree
1 V~ part with the degree 0 V=" part. Then we integrate over M. What we have shown is
that

AL tJ(N) = )\/ Str ky(x, x)|dx|.
xeM

This completes the proof.
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