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1. Introduction

The aim of this talk is to present a proof, using the language of factorization algebras,
and in particular the index theorem in Chapter 7 of [G], of the following

Theorem 1.1 (McKean-Singer). Let V be a Hermitian, Z2-graded vector bundle on a com-
pact Riemannian manifold M , with |dx| the Riemannian volume form on M . Let D be a
self-adjoint Dirac operator on V , with kt the heat kernel of D2. Then

(1) ind(D) =

∫
M

Str(kt(x, x))|dx|.

The actual McKean-Singer theorem works for non-self-adjoint Dirac operators as well, but
our proof will require D to be self-adjoint. We will give definitions of all of the objects in the
theorem shortly, but first a bit of philosophy. This theorem gives us a relationship between a
global, analytic quantity (the index of a Dirac operator) and a local, physical quantity (the
super-trace of a heat kernel). This is what the index theorem is most famous for. We will
see that the theorem of Gwilliam is similar in nature: it describes two ways to compute the
obstruction to quantizing a field theory equivariantly with respect to the action of an L∞
algebra. One involves Feynman diagrams (which involve heat kernels), and the other is a
global characterization (which will give us the index). This is, very roughly speaking, why
we are able to use the theorem relating to field theory to prove an index-type theorem.

2. Generalized Laplacians, Heat Kernels, and Dirac Operators

We present here a list of definitions and results relevant to our talk. Throughout, M is
a Riemannian manifold with Riemannian volume form |dx|. We let V → M be a vector
bundle, which we will eventually specialify to be Z2-graded. We let V be the sheaf of smooth
sections of V .

Definition 2.1. A generalized Laplacian is a differential operator

H : V(M)→ V(M)

such that
[[H, f ], f ] = −2|df |2,

where we are thinking of C∞ functions as operators corresponding to multiplication by those
functions.

Now we let V be Z2-graded, and we denote by V ± the plus or minus graded components
of V .
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Definition 2.2. A Dirac operator on V is a grading-reversing operator

D : Γ(M,V ±)→ Γ(M,V ∓)

such that D2 is a generalized Laplacian.

Theorem 2.1 (The Heat Kernel). Let (E,Q) be an elliptic complex, and let QGF be a
cohomological degree -1 operator such that H := QQGF + QGFQ is a generalized Laplacian.
Then there is a unique heat kernel k ∈ Γ(M ×M × R > 0, E � E∗) satisfying:

(1)
d

dt
Kt + (H ⊗ 1)Kt = 0

(2) For s ∈ Γ(M,E),

lim
t→0

∫
y∈M

kt(x, y)s(y)|dx| = s(x),

where the limit is uniform over M and is taken with respect to some norm on E.

The heat kernel is the kernel of the operator e−tH in the sense that∫
y∈M

kt(x, y)s(y) = (e−tHs)(x).

Definition 2.3. Let D+ denote the restriction of a self-adjoint Dirac operator D to the
space of positively-graded sections. Then, the index ind(D) of D is dim(ker(D+)) −
dim(coker(D+)).

The last definition we need to understand this theorem as stated is

Definition 2.4. If φ : V → V is a grading-preserving endomorphism of the super-vector
space V , then the supertrace Str(φ) is defined to be

Str(φ) = Tr(φ |V +)− Tr(φ |V −)

3. Equivariant Quantization of Free Theories

In this section, we discuss a theorem of Gwilliam about the quantization of cotangent
theories with the action of an elliptic local L∞ algebra.

3.1. Set-up. For our purposes, we will just need the L∞ algebra to have a 1-bracket. In
other words, we will have an elliptic complex (L, d) on M acting on an elliptic complex
(E , Q). Specifically, we need the following

Definition 3.1. A local representation of the elliptic complex (L, d) on an elliptic complex
(E , Q) is a polydifferential operator [ , ] : L ⊗ E → E such that we have

(1) A derivation property:

Q([X,φ]) = [dX, φ] + (−1)|X|[X,Qφ]

(2) A Jacobi identity:

[X, [Y, φ]] = (−1)|X||Y |[Y, [X,φ]]

Remark: As mentioned above, we could expand this definition to include local rep-
resentations of elliptic L∞-algebras on (E , Q), which is the level of generality in which the
theorem of Gwilliam applies. However, we will not need this in our proof.
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Example 3.1 (Key Example). Let V be a Z2-graded vector bundle on M with a Dirac
operator D. Define

E = V+ D−→ V−.
Here V sits in degree 0. We let L = (Ω•, ddR), and define for f ∈ C∞M

[f, φ] = fφ.

By the derivation property, we must have

[df, φ] = D(fφ)− f(Dφ).

Some thought shows that this gives a well-defined action of one-forms on E . The brackets of
all higher forms on elements of E vanish for degree reasons. Finally, the Jacobi property is
trivially satisfied.

If we have the data of an elliptic complex (L, d) and a local representation (E , Q) of L, we
can define a BV theory whose space of fields is

F := L[1]⊕ E ⊕ E ![−1],

where E ! is the space of sections of the bundle E∨. We think of this as the space of fields
corresponding to the action

S(X,φ, ψ) = 〈φ,Q+Q!ψ〉+ 〈φ, [X,ψ]〉
where X ∈ L[1], ψ, φ ∈ T ∗[−1]E := E ⊕ E ![−1], and 〈 , 〉 is the natural anti-symmetric,
degree -1 pairing on T ∗[−1]. We should think of X as a background field, and we would like
to quantize, for every X, the theory with action S(X,φ, ψ), thought of as only a function of
the fields φ, ψ. The field X is non-propagating in the sense that when we do the Feynman
diagrammatics, there are no internal edges corresponding to L fields; we think of X as being
an external “source.”

Another way to think about this setup is to think of X as providing a deformation of the
complex (E , Q) with “differential” Q + [X, ]. This operator will be degree +1 if X lives in
degree 1 in L and will square to zero if

Q2φ+Q[X,φ] + [X,Qφ] + [X, [X,φ]] = [dX, φ] = 0,

where we have used both properties of a local representation in the penultimate equality.
Thus, for every closed degree 1 element X of L, we have another elliptic complex (E , Q +
[X, ]).

Now is the right time to say something about the Feynman diagrammatic way to describe
the situation. We should think of the term

〈φ, [X,ψ]〉
as corresponding to a trivalent vertex that we can put in graphs, with one half-edge corre-
sponding to an element of L and two corresponding to T ∗[−1]E .

We will need one final bit of data to quantize the theory we’re describing:

Definition 3.2. A gauge-fixing operator is an operator QGF : T ∗[−1]E → T ∗[−1]E satis-
fying

(1) (QGF )2 = 0.
(2) QGF is self-adjoint for the pairing 〈 , 〉.
(3) [Q,QGF ] is a generalized Laplacian, which we will denote H. (Here, we are taking the

graded commutator, which for degree +1 and −1 operators is the anti-commutator).
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In our theory, we have an obvious choice of gauge-fixing operator, namely the Dirac
operator D− +D−!.

3.2. Chevalley-Eilenberg Cochains. For those of you who are into factorization algebras,
you know that given a space of fields we can define a cochain complex of classical observables
for each open set of M . In our case, we can take

Obscl(U) = C•
(
L(U), Ŝym

∗ (
E∨ ⊕ E ![1]∨

))
,

i.e. the classical observables are the Chevalley-Eilenberg cochains for the representation

Ŝym
∗ (
E∨ ⊕ E ![−1]∨

)
. Here ∨ means distributional dual. More explicitly,

Obscl(U) = Ŝym
• (
L[1]∨(U)⊕ E∨(U)⊕ E ![−1]∨(U)

)
with the differential d+Q+ {I, }. Here, d is the operator on Obscl(U) defined as the dual
to d on L∨[−1] and 0 on E∨ ⊕ E ![−1]∨, and then extended to all of Obscl(U) by demanding
that it be a derivation of degree 1. We mean a similar thing for Q, except that we define it
as Q⊕Q! on E∨ ⊕ E ![−1]∨ and 0 on L∨[−1]. To define {I, }, we first let I denote the coset

of the following element of L(U)[1]∨ ⊗ E∨ ⊗ E ![−1]∨ in Ŝym
•
:

X ⊗ φ⊗ ψ 7→ 〈φ,Xψ〉.

To define {I, } takes a bit of effort. The quickest way to define it is by defining it on elements
φ of T ∗[−1]E∨ by

{I, φ}(X,ψ) = −φ([X,ψ])

when X ∈ L and ψ ∈ T ∗[−1]E . We extend {I, } to the rest of Obscl(U) by demanding
that it be zero on elements of L[1]∨ and a degree 1 derivation. Diagrammatically, {I, } is
represented by the following picture: DRAW PICTURE

Now that we’ve described the classical observables, we should move on to the quantum
observables. This is the point where I should say that I was lying when I said that the
quantum theory is described by the interaction I. We want to deform the differential on
Obscl(U) by a term ~∆, where ∆ is a BV Laplacian. This is what works in the finite-
dimensional version of the BV story. However, the ∆ as we would want to define it requires
pairing distributions with distributions, a big no-no. Our next best solution is to have a
family ∆t of BV Laplacians parametrized by R > 0. The first thing we want to do is define
a slight modification of heat kernel which is more useful for our purposes.

Definition 3.3. The BV heat kernel Kt ∈ T ∗[−1]E ⊗ T ∗[−1]E is characterized by the
property

−1⊗ 〈 , 〉(Kt ⊗ e) = exp(−tH)e.

In other words,

−Kt(x, 〈y), 〉 = kt(x, y),

where the notation hopefully explains itself. It should be noted that the heat kernel is a
degree one object. Now, we can define

Definition 3.4. (1) The scale t BV Laplacian is the order-two operator −∂Kt ; in other
words, given an element φ of Obscl(U), we sum (with appropriate signs) over possible
ways of putting Kt in two of the “slots” of φ.
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(2) The scale t Poisson bracket { , }t is defined by

{J, J ′}t = ∆t(JJ
′)−∆t(J)J ′ − (−1)|J |J∆t(J

′).

Now, I won’t get into the details, but there is a very non-canonical procedure for replacing
I with a family of interactions I[t] ∈ Obscl(U)[[~]], one for each t, such that there is a well-
defined t → 0 limit modulo ~ and I[t → 0] = I ( mod ~). With all of these objects in
place, we can define the scale t quantum observables:

Definition 3.5. The scale t quantum observables have the same underlying graded vector
space as Obscl(U), but with the “pre-”differential

Q+ d+ {I[t], }t + ~∆t.

The important question is whether this differential squares to zero; in fact, it turns out
that the I[t]s are related in such a way that if the scale t pre-differential squares to zero,
then the scale t′ differential does as well for any other t′. The failure of this differential to
square to zero is what we call the obstruction to L-equivariant quantization of E .

3.3. Obstruction Theory. Let us examine the obstruction more closely. Our main tool is
the following theorem

Theorem 3.1 (Gwilliam). (1) The obstruction to the L-equivariant quantization of the

cotangent theory to E is given by a well-defined cohomology class O(U) ∈ H•(Ŝym(L[1]∨)).
(2) Under conditions which are satisfied if in our key example D is self-adjoint with

respect to some Hermitian metric on V and M is compact, then O(M) is given by
the trace of the action of H•(L(M)) on the determinant of H∗(E(M)). Here we mean
the graded determinant: if V is a Z-graded vector space,

det(V ) =
⊗
i

(ΛdimViVi)
(−1)i ,

with W−1 defined as W∨.

We want to say more about how the obstruction class. To this end, we need the following

Definition 3.6. The propagator from scale t to scale t′ is a degree 0 section of T ∗[−1]E⊗
T ∗[−1]E given by

P (t, t′) =

∫ t′

s=t

(QGF ⊗ 1)Ksds.

Now, we can describe how to compute the obstruction O(U). We let

Definition 3.7. The tree-level, scale t interaction is the element of Obsq(U)[t] given by
taking a sum over all connected tree-graphs with trivalent vertices as described above. The
internal edges can only be composed of T ∗[−1]E half-edges. To each graph we associate the
following element of Obsq(U)[t]: DRAW IT

Notice that for simple combinatorial reasons, all of the trees contributing to Itr have only

two external T ∗[−1]E edges. Thus, ∆tItr belongs to Ŝym(L[1]∨). More important, we have

Lemma 3.2. A representative of the obstruction class is given by ∆tItr[t]. The cohomology
class of this obstruction is independent of t.
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4. McKean-Singer

Now we are ready to use this machinery to derive the McKean-Singer formula. Recall

from our key example that we want to take E = V+ D+

−→ V−, L = Ω•, and QGF to be
the negative part of the Dirac operator. We claim that Theorem 3.1 implies the McKean-
Singer formula. To see this, let us first work out what the second part of the theorem
tells us: in our case H•(E) has ker(D+) in degree 0 and coker(D+) in degree 1, so that
det(H•(E)) = Λdimker(D+) ker(D+) ⊗ (Λdim coker(D+) coker(D+))∨. Now, H•(L) is just the de
Rham cohomology of M . In particular λ ∈ H0(L) acts on det(H•(E)) by λ ind(D). So,
we have one side of the equality. On the other hand, we consider the Feynman diagrams
appearing in Itr[t]: a graph with n vertices corresponds to the element

λ⊗n ⊗ φ⊗ ψ = λn〈φ, (QGF

∫ t

0

e−sHds)n−1ψ〉.

Since QGF e−tH lowers cohomological degree by 1, all terms with n > 2 are just zero. And
the term for n = 2 does not vanish, but when we take the BV Laplacian to it, it will vanish.
This is because 〈φ, (QGF e−tH)n−1ψ〉 is non-zero only when φ and ψ sit in the same degree.
On the other hand, Kt ∈ E0 ⊗ E1 ⊕ E1 ⊗ E0, so when we take the BV Laplacian, we do not
get a non-zero contribution. Thus, the only contribution to the obstruction comes from the
following diagram: DRAW IT

This diagram gives a contribution computed in the following way: at each point x of M ,
kt(x, x) is an element of V +

x ⊗ V +∨
x ⊕ V −x ⊗ V −∨x . We pair these via 〈, 〉, which means that

when we pair V +
x with V +!

x we get no sign, but we get a minus sign when we pair the degree
1 V − part with the degree 0 V −! part. Then we integrate over M . What we have shown is
that

∆tItr[t](λ) = λ

∫
x∈M

Str kt(x, x)|dx|.

This completes the proof.
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